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ABSTRACT 

The properties of the attenuated Radon transform and its application 

to single-photon emission computed tomography (ECT) are analyzed in detail. 

In nuclear medicine and biological research, the objective of ECT is to 

describe quantitatively the posi on and strengths of internal sources of 

injected radiopharmaceuticals and radionuclides where the attenuation 

between the sources and detector is unknown. The problem is mathematically 

and practically quite different from well-known me~hods in transmission 

computed tomography (TCT) where only the attenuation is unknown. A mathe-

matical structure using function theory and the theory of linear operators 

on Hilbert spaces is developed to better understand the spectral properties 

of the attenuated Radon transform. The continuous attenuated Radon transform 

is reduced to a matrix operator for discrete angular and lateral sampling, 

and the reconstruction problem reduces to a system of linear equations. 

For variable attenuation coefficients frequently found in imaging internal 

organs, the numerical methods developed in this paper involve iterative 

techniques of performing the generalized inverse. Its application to 

nuclear medicine is demonstrated by reconstructions of transverse sections 

of the brain, heart, and liver. 
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1. Introduction. 1he attenuated Radon transform describes mathe-

matically the relationship between the number of photons emitted from 

radionuclide distributed in a transverse section of the body and the number 

of photons projected onto a scintillation detector [13]. Reconstruction 

procedures which numerically invert the attenuated Radon transform are 

used in single-photon emission computed tomography (ECT) to quantitate 

the three-dimensional distribution of gamma-emitting radiopharmaceuticals 

and radionuclides in the body. This appl"icat·ion of ECT g'ives the physician 

a more accurate way of seeing inside the human body and provides a noninvasive 

procedure for studying biological processes both in health and in disease. 

ECT is a field of nuclear medicine which uses projections of radio-

nuclide distribution data- collected using scintillation detectors 

at different angles -to reconstruct cross-sectional images of the internal 

organs of the body" The instrumentation and strategies of ECT are divided 

into two major categories- 1) single-photon ECT, which uses either 

multiple-detector arrays [23],[45],[66] or scintillation cameras [4],[11], 

[39],[43] for the detection of single-photon emitting radionuclides such 

as 99mTc, and 123r; and 2) positron ECT, which uses coincidence detection 

[8],[18],[57],[70] of annihilation photons from positron-emitting radio­

nuclides such as 11 c, 13N, 150, 68Ga, and 82Rb. In this pa~er we will be 

concerned with the former. 

The major use of ECT is the quantitative in vivo measurement of 

biochemical and hemodynamic functions. This is in contrast to x-ray 

transmission computed tomography (TCT), which has as its major use the 

anatomic description of cross sections of body organs. The methods differ 

in principle: ECT seeks to describe the location and intensity of sources 



-2-

of emitted photons in an attenuating medium, whereas TCT seeks to 

determine the density distribution of the attenuating medium from the 

projected shadow of an external x-ray or gamma-ray emitting source. 

Single-photon ECT as exemplified by the attenuated Radon transform differs 

from both TCT and positron ECT in the mathematical procedures required 

to reconstruct the cross-sectional images. The attenuation compensation 

needed for single-photon ECT is not a simple multiplicative correction 

of the observed projection data as in the case of positron emission 

tomography [28]. However, iterative methods can be developed which 

adequately quantitate the distribution of single-photon radionuclides 

despite the attenuation of their radiation by a variable attenuation 

dis tri buti on, 

The first clinically useful x-ray TCT machine was invented by 

Hounsfield of EMI, Ltd. in 1970 [35]. Since that time x-ray TCT has 

made a major impact on diagnostic radiological procedures with mathematical 

techniques and algorithms playing a central role [62],[64]. Even before 

the EMI scanner, the principles of ECT were worked out by Kuhl and 

Edwards [44]. However, the clinical application of ECT has lagged 

far behind that of x-ray TCT, primarily because the attenuation problem 

has made it difficult to quantitate the distribution of radionuclides. 

In the last 15 years, researchers have investigated different ways of 

reconstructing radionuclide distributions by developing new instruments 

and algorithms for inverting the attenuated Radon transform. These 

advances are reviewed in [9],[14],[28],[56],[69]. 

To illustrate the concepts of single-photon ECT, consider the example 

of a physician who is trying to detect small lesions in a patient's liver 



(Fig. 1). The patient is injected with a radiopharmaceutical such as 
99mTc sulfur colloid which localizes by phagocytosis in the Kupffer cells 

of the liver and other cells of the reticuloendothelial system. Cancer 

invasion results in failure of the diseased area to concentrate the 

colloidal particles [19]. 

A scintillation camera [1] -either fixed, with the patient rotating 

as illustrated in Fig. 2, or the with camera itself rotated by a gantry 

[43]- or a circular arrangement of scintillation detectors which scan 

in angle and horizontally [66] can be used to detect the photons emitted 

by the radionuclide 99mTc. The scintillation detector consists of a 

crystal which converts the high-energy gamma photons into light, and 

photomultiplier tubes which convert the light scintillation into an 

electronic signal. By electronic circuitry these electrical signals are 

used to display an image on an oscilloscope or are converted from analog 

to digital signals and stored in a computer for display as a digital image. 

The images, commonly referred to as scintigrams, show an intensity 

directly proportional to the concentration of the radiopharmaceutical. 

Therefore a neoplastic lesion in the liver should show up on the images 

as a low intensity region surrounded by higher intensity from the 

normally functioning tissue, However, since the images represent the 

projection of the liver, overlying and underlying tissues, and other 

organs such as the spleen, the image of small lesions will be obliterated 

by the projection of these surrounding tissues onto the image plane. 

To better visualize the liver and the suspected lesions, we obtain 

images at different angles, in which the internal organs appear in 

different relationships to one another. The information from a cross-
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Fig. 1. Illustration of a transverse section through the liver and spleen 
as one would view it looking from the feet toward the head, The anterior 
and left lateral views show the projected image of the lesion shown in the 
transverse section. 
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Fig. 2. Single-photon emission computed tomography. At the rotation 
angle 8 and lateral sampling ~. the detector will see those photons which 
travel along the 1 ine ~ + xsine ycose = 0 and are not attenuated by body 
tissue, 
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section of the body through the liver is recorded as a single one-dimen­

sional line on each image. Taking this line for each angle and digitally 

processing the data, we reconstruct the desired two-dimensional cross 

section. This procedure separates the overlying and underlying tissue 

and allows the physician to quantitate the spatial distribution of 

the sulfur colloid sequestered by the liver. Lesions such as the one 

shown in Fig. 1 can be detected with better resolution and greater 

contrast than is possible with any of the traditional projected 

scintigrams. 

The reconstruction of the cross-sectional image is complicated by 

the attenuation of the emitted photons. The scintillation detector can 

detect only those unattenuated photons projected along rays intersecting 

the camera face. The degree to which these photons are attenuated depends 

on the energy of the emitted photons and the density of the tissue 

interposed between the emitting source and the detector. For example9 

78% of the 140 keV photons emitted from 99mTc radionuclides will be 

scattered or absorbed in passing through 10 em of tissue. Therefore 

only 22% of these emitted photons will carry useful information. This 

presents a difficult problem for quantitating the actual distribution 

in any cross sectional image. 

If mathematical algorithms appropriate for TCT [7].[25],[33].[38], 

[59],[63] are applied to projection data obtained from a scintillation 

camera. the results of reconstructing a uniform source within an 

attenuating medium such as the body will show a concentration which 

appears to be less in the center than at the edges. However, knowing 

the attenuation distribution, we can correct the effects of attenuation 
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and obtain a true quantitative measure of the radionuclide concentration. 

The attenuation distribution is determined by TCT, using an external 

transmission source with the same energy as the emitted photon of the 

radionuclide (140 keV for 99mTc). The intensity of the transmitted beam 

is measured at different angles. These data are compared to the incident 

beam intensity and the results give a measure of the attenuation of the 

photons by the tissue between the source and the detector. The distri­

bution of attenuation coefficients is reconstructed for the same cross 

sections as those chosen for the radionuclide cross-sectional images. 

With this a priori information about the character of the attenuating 

medium, we can use single-photon ECT to determine the location and intensity 

of the source of emitted photons by inverting the attenuated Radon transform. 

To describe mathematically the single-photon ECT problem, we use p 

to denote the concentration of the radionuclide in counts/area at the 

point r = (x,y), ~to denote the distribution of attenuation coefficients 

in units of (length)- 1, and p to denote the projection of the emitted 

photons as illustrated in Fig. 2. The projections for a particular 

transverse section represent photons which have been released by radio­

active nuclei that lie in the transverse section perpendicular to the 

detector. The photons measured are only those photons which are released 

within a solid angle subtended by the detector and collimator II'Jhich are 

not attenuated by the body tissue between the nucleus and the detector. 

If a photon is emitted from a nucleus at the point ~0 and travels along 

the line ~ + x sine- y cose = 0, the probability that the photon will 

reach the detector is given by the formula 
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probability of photon _ exp [-j p(i'.,F.,U)dt.J 
escaping 

z;; ~so 

where the distribution of attenuation coefficients ~ is a function of 

tissue density and photon energy. The projection p(~,e) at the angle e 

and lateral sampling ~ is the line integral of p weighted by the 

exponential factor in (1.1): 

( 1. 2) p(~,e) J p(c')O(<··<(,~>ldr'] o(E,-<r,e>)dr 
1 1 <r i 9 e > ~ <r 9 e > 

where e = (-sine,cose) and e1 = (cose,sine). The mapping Au:p + p in 

(1.2) is the attenuated Radon transform. If~= 0 everywhere, the attenuated 

Radon transform reduces to the transform [22] , [ 48] defined by 

Radon in 1917 [58]. To define the attenuated Radon transform, the 

distribution of attenuation coefficients ~ for the cross section is 

required. In some situations this distribution can be assumed to be 

constant, but for precise measurements it requires the use of TCT. 

The exponential term in (1.2) has, unfortunately, such large values for 

all energies used in nuclear medicine that the reconstructed images are 

seriously affected using TCT algorithms without compensating for 

attenuation. 

This paper presents an analysis of the attenuated Radon transform 

and describes a reconstruction algorithm which uses an iterative method 

to numerically invert the attenuated Radon transform. The work presented 

differs from previous work in the literature [3],[4],[16],[36],[53],[71], 

[72] in that the attenuated Radon transform is defined for variable 
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distributions of attenuation coefficients. Following this introduction, 

preliminary mathematical definitions and concepts are given which are used 

to formulate the properties of the attenuated Radon transform for both 

discrete angular sampling and continuous angular sampling. Then some 

basic theorems are given for the single-angle attenuated projection 

operator which maps L2 spaces with special weight functions into L2 spaces. 

These results are then extended to the continuous angle case. The 

generalized inverse and the singular value decomposition of compact 

operators are described in the context of the continuous angle operator. 

This gives a structure for the analysis of the mathematical and spectral 

properties of the attenuated Radon transform. The last two sections 

deal with iterative methods for inverting the attenuated Radon transform 

for arbitrary attenuation distributions, and with results obtained from 

patient and animal studies. 
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2. Preliminary definitions. The definition of the attenuated Radon 

transform A~ given by ('1.2) can be rewritten using the rotated coordinates 

(see Fig. 2) : 

x = -~ sine + c: cose 
( 2. 1 ) 

y ~ ~ cose + ~ sine 

This gives 
00 

(2.2) (-~ sine + c: cose, ~ cose + c: sine) a(s.~.e)ds , 

where 

(2.3) 
00 

a(~.t;.e) = exp [ JJ(-~ sine + c:' cose, ~ cose + c:' sine)ds'] 
s 

The upper limit is chosen to be at infinity for mathematical convenience. 

This allows for general distributions of both concentration and attenua-

tion coefficients; in practical situations, it does not matter if 

conceptually the detector is placed at infinity since the distribution 

of isotope concentration and attenuation coefficients is zero outside a 

compact subset of m2. 

The distribution function p is a real valued function of the 

vector r. We will use the vector r with coordinates (x,y) to 

denote the spatial position in the transverse section which has concen­

tration density p(r). In (2.2) we see that the function p is mapped into 

the function A p:IC == IR x [0,2n) + IR whose domain a: is the direct product of 
]J 

the real numbers with the interval [0,2n). The notation A{p,JJ;~,e} will 

be used interchangeably with A~p(~,e) to denote the transformed function 

which is the attenuated Radon transform of p with respect to the attenu-
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ation distribution~ evaluated at ~ and e. Recall that the Radon 

transform is a special case of the attenuated Radon transform~ that is, 

~ = 0 everywhere. Therefore A
0 

\'Jill be used to denote the Radon transform. 

If A~ maps the Hilbert space X of concentration functions p into the 

Hi 1 bert space Y of projection functions p, then the range and the null 

space of the linear operator A~ is denoted as ~(A~)~ Y and j1/(A~) ~X, 

respectively, The adjoint operator of A~. denoted by A~. maps the Hilbert 

space Y into X and is defined such that <p,A~p> = [A~p,p] for all p E X 

and pEY, where <,>and [,]are the inner products in the Hilbert 

space X andY, respectively. If All: X+Y is a bounded linear operator, 

then /V(A~) and ;V(A~) are closed subspaces of X and Y, respectively; 

and X = ./V(All) + ;V(All)1 and Y =ft(A~) +./V(A~) 1 , where the notation 

s1 denotes the orthogonal component of S. 

One particular Hilbert space we will consider is L2 (~2 ,w), which 

represents the space of real valued functions that are square integrable 

with respect to the weight function W. It will be shown in section 4 

that with properly chosen weight functions the attenuated Radon 

transform maps this Hilbert space into the Hilbert space L2(oc,w) of 

the projection functions p defined on the set ( which are square 

integrable with respect to the weight function w. The inner product 

for L
2

(1R2,w) is 

(2.4) <p,p'>01 2,w " JJ p(x,y) r' (x,y) W(x,y) dxdy 

!R2 

and the inner product for L2(t,w) is 

( 2. 5) p(~.e) g(~.e) w(~.e) d~de 



-12-

The adjoint transform of the attenuated Radon transform 

A1J: L 2 ( lR2, W) -+ L 2 ( 0:, w) is 

(2.6) 

where 

(2. 7) 

2rr 

~~--:-f g(-x sine+ y cose,e) W(x,y 
0 

x a(x,y -x sine+ y cose,e) w(-x sine+ y cose,e)de • 

a(x,y,-x sine+ y cose,e) "' 

( 
2 I 

1.1 x sin e - y case sine + ~ cose, 

X cose + y sine 

.. x sine cose + y cos's I· s'sine)ds'] 

By the property of functionals on Hilbert spaces, we know that A~g is 

unique. The adjoint transform A~ is an inverse mapping in the sense 

that it maps the Hilbert space of projection functions L2(t,w) into the 

Hilbert space of concentration functions L2(lR2,w). 

Another operator which operates on L2(t,w) is the back-projection 

operator B1J defined by 
2rr 

(2.8) J 
0 

g(-x sine + y cose,e) 
a(x,y,-x sine + y cose,e) 

de 

This operator differs from the adjoint transform ((2.6)) in that the 

weighting functions W and w do not appear and the attenuation factor 

is equal to the reciprocal of the attenuation factor given in (2.7). 

Both the adjoint transform A~ and the back-projection operator B1J can 

be considered as ''back-projection" operators since they both assign 
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a value for the point (x,y) which corresponds to back-projecting the 

projection values for all project·ion rays passing through the same point 

(x,y) weighted by the appropriate weighting functions and attenuation factors. 

3. The si tor. The single-angle projection 

operator A~~e is defined as (A~. 8 p)(~) = (A~p)(~.e) so that A~.eP is a 

single projection at the angle e. In this section we will investigate some 

of the properties of the single-angle projection operator A~.e which are 

extensions of the results developed by ~1arr [50] for the Radon transform. 

The goal is to define an operator which is a modification of the attenuated 

Radon transform so that we can look at some interesting Hilbert spaces in 

which this operator composed with its adjoint is an "into" mapping. This then 

gives us a hint as to how to proceed when we look at the continuous angle case. 

In the following theorems we will use the attenuation function a 

given by (2.7) as a weight function for the Hilbert space L1(R2,a). 

Functions p E L1 (R2,a) satisfy 

jp(x,y)j atx,y,-x sine+ y cose,e) dxdy < oo • 

!R2 

The weight function a(x,y,-x sine + y cose,e) represents the line 

integral of the attenuation coefficients from the point (x,y) to oo in 

the direction of the vector e1 
= (cose,sine). The inner product for the 

Hilbert space L1(1R 2,a) is given by 

<f,g> 2 
R ,a 

= Jf f(x,y) g(x,y) a(x,y,-x sine+ y cose,e) dxdy 

[R2 
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THEOREM 1" For any e, A~.e is a bounded linear map from L 1 (~2 .a) 

into L 
1 

(IR) with II A~, ell = 1" 

PROOF" Using the definition (A~,e p)(~) = (A~ p)(~,8) and the 

definition of A~ given by (2.2) we have 

j1 (A~.e p) (~) jd~ = J I J p(-t;: sine + ;;; case, ~ cose + r; sine) 

!R 
x a(r,,t;:,e)dz;; j d~ 

~ j(j( Jp(-~ sine+ r; cose, ~ cose + r; sine) 

IR2 

x a(r;.~.e)l dr;dt; 

I 2 
Using Fubini's theorem, we have for pEL (IR ,a): 

(3.1) ji(A~.ep)(l;)ld~ < Jj[o(x,y) a(x,y,-x sine+ y coso,e)[dxdy < oo. 

IR2 !R2 

Therefore A e p E L1 (1R). Rewriting (3.1), we can express this as 
~. 

This implies that 

sup 
IIPII ~ l 

~ l . 

If we let p(x,y) = o(x) o(y) [a(x,y,-x sine+ y cose,e)]- 1 we see that 

II A ell = 1. 
~. 

QoLOo 
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Next we want to consider the adjoint operator of A]J,e: L1(1R2,a) + 

L1 (~). The inner product for the Hilbert space L 1 (~) is given by 

[p,q]~ = J p(~) q(~)dt,. Therefore. using this definition and the 

correspon~ing definition of inner product for the Hilbert space L1(1R2,a), 

one can show that the adjoint operator A~,e maps the function h defined 

on ~ into the function A~.e h given by 

(3.2) (A~,e h)(x.y) = h( x sine + y cose) 

The function A~ h is a ridge function [47] which is constant along 

lines that are parallel to e1 
= (cose,sine). 

DEFINITION. The function X E L1 (~2,a) will denote the 

characteristic function for a subset .il of R2 (i.e., X= 1 for points 
A 

in the subset nand 0 otherwise) and X 8 =A 8 X. The operator Mf 
].1, ].1, 

will denote the multiplication operator such that (Mf g)(x,y) = 

f(x,y) g(x,y). 

THEOREM 2. For X E L1([R2,a) 

( 3. 3) 

* * PROOF. By the definition of A]J.e in (3.2), we have (A]J,G h)(x,y) = 

h(-x sine+ y cose). Applying the operator Mx to this gives 

X(x,y) x h(-x sine+ y cose). Therefore the expression on the left in 
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(3.3) is given by 

(A~,e MX A:, 8h)(rJ " Jfx(x,y) h(-x sine+ y cose} a(x,y,~,e} 
IR2 

x o(~ + x sine - y cose) dxdy 

Using the transformation of coordinates (2. 1) we have 

00 

(A e Mx A* e h)(~) = J x(~.~.e) h(~) a(~.~.e)ds 
]J, ]J, 

-oo 

Q.E.D. 

A 

DEFINITION. The e-s i1 houette of D is the set De = {< ~ ·~ > I~ E D} . 

The intersection of the line~+ x sine - y cose = 0 and the set D is 

THEOREM 3. 
1 l A 

The operator AJJ,e maps L (D,a) onto L (D8) with 

PROOF. To show that AJJ,e is an into mapping, follow steps similar 

to those in Theorem 1. To show that it is an onto mapping, take a 

function 

(3.4) p (X ,y) = X(x,y) h(-x sine + y cose) 
X e(-x sine + y case) 

]J, 

Using (2.2) and (2.3), 
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h(t;) 

To show that pin (3.4) is in L1(st.,a) we have, using Schwartz's ·inequality 

and applying Fubini's theorem, 

p(x.y)j a(x,y,-x sine+ y cose.e)dxdy 

I X (X .y) h (- x sine + y cos e) I ( . 8 , a x,y,-x s1n 
X (-x sine + y cose) 

)J,8 

+ y cos8,8)dxdy = 

then p E L1 (st..a). To show that the norm of A 8 )J, 

is equal to one follows immediately from steps similar to those given 

in Theorem 1. Q.E.D. 

Next we want to define a new single-angle projection operator for 

the attenuated Radon transform. It will be shown that this operator 

has an important application in defining an ART algorithm for reconstruc-

ting attenuated projection data. 
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DEFINITION. For a set ~ c R2 with characteristic function X, 

the operators R 8 and R* 8 are defined as follows 
]J, ]J, 

(3.5) i ) R 
]J,8 = M(x )-1 A 8 JJ,e JJ, 

(3.6) ii) 

where A* ·is defined by (3.2). 
]J,e 

THEOREM 4. For any e and any bounded open set~ ~R2 the following 

are true: 

(1•) 2( ) 2(A A ) RJJ.e maps L ~.a onto L ~8 • x!J,e . 

( i i) 

(iii) 

PROOF. 

* The composite operator RJJ,e RJJ,e 
2 A A 

on L (~8 • xJJ, 8). 

is an identity 

The composite operator R* 8 R 8 is an idempotent 
]J, ]J, 

operator- i.e., (R* 8 R 8)2 = R* 8 R 8. 
]J, ]J, ]J, ]J, 

(i) Using Schwartz's inequality and the definitions of 

A 8 in (2.2) and R 8 in (3.5), we see from the following sequence of 
]J, ]J, 

inequalities that R 8 maps L 2 (~.a) into L2(n8• X 8): 
]J, ]J, 

I(Ap,e p)(l;)l - [jo(c,t,.e) x(c.~.e) a(,,t,,e)ct,[ 

~,.. e c,, 

,;; ( p(c;;,t;,e)j 2 a(c;;,t;,e)ctc;;)~(Jx(c;;,t;,e) a(c;;,t;,e)dc;;)~ 
~t;.e ~t;.e 
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For p E L 2 (r~,a) 

Therefore, 

To show that R e is an onto mapping, take a function ]J, 
2 A A 

h E L (De. x e) and let 
]J. 

p(x,y) "' X(x,y) h(-x sine+ y cose) 

Then using (2.2), (2.3), and (3.5), 

1 
-~-- X(s.~.e) h(~) a(s.~.e)ds 
x]J,e(~) 

Dee 

= h(U 

To show that p E L2(D,a) we have, using Schwartz's inequality and 

Fubini's theorem, 

( lo(x,y)i 2 a(x,y,-x sine+ y cose,e)dxdy)~ 

X(x,y) h(-x sine+ y cose) 1
2 a(x,y,-x sine+ 

+ y cose,e)dxdy)~ = X(s.~.e) jh(tJI a(c;,~.e)dsd~ 2 2 )k 



(ii) The proof that R 8 R* 8 is an 
]J, )J, 

follows immediately from Theorem 2 and the 

(iii) Using the result in (ii) we have 

identity on L2(ae. X ) , p,e 
A 

fact that X 8 (~) f 0 for 
)J, 

(R* R )2 
= R* R R* R 

p,e p,e p,e p,e p,e p,e 

COROLLARY 4. l . 

Q.E.D. 

2 For any function p E L (n,a) the operator P 8 p, 

operating on p' defined as 

2 is a projection operator mapping L (n,a) onto the subspace p+j1/(R 
8

). 
jJ, 

PROOF. The operator P is an idempotent operator, which can 
)J,8 

be shown as follows 

By Theorem 4 (iii ) we know that 

therefore 

= p' + R* R (p-p') + R* 8R 
8

(p-p') 
p,e p,e JJ, p, 

= p' + R~.eRp,e(p-p') 
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Further, one can show that PJJ,G is Hermitian and the subspace p+jV(Rp,G) 

is equal to {p'jP 8 p' = p'}, Using [30, Theorem 3, p.44], 
jJ, 

we know that P 8 is a projection operator mapping L 2 (~,a) onto the 
]J, 

subspace p +jV(R 8). Q.E.D. p, 

This result has important application in developing an algorithm 

for determining a solution to a finite set of projections R 8 p, 
]J, l 

R e p, ... , R e P· 
p,2 Jl,N 

The algorithm is due to Kaczmarz [31],[41] and 

in computed tomography is more commonly called ART [27]. The concentra-

tion functions which have the same projections as the solution p are 

those in the subspace 7JZ = (P + .~ ;V(R )\. If P N is the 
1=1 p,e; I v. 

projection operation given by 

then 

p 
v,N 

for an initial guess Po 

N 
IT 

i=l 

the 

p 
p,8. 

l 

theorem due 

that pK 
Jl,N Po converges to the projection of p 

to Kaczmarz shows 

on m [31]. If 
0 Po is 

to be zero, then K 
't,N °o converges to the unique function p of smallest 

norm that satisfies R p 
]J,8· 

1 
fori=l, ... ,N. 

4. The Continuous-An~Projection Operator. In this section we 

will investigate the attenuated Radon transform given in (2.2) for 

chosen 

continuous angle. First we will look at some shift properties. then our 

investigation will lead to a discussion of the generalized inverse and 

some of the spectral considerations for this transform. 

The following theorem gives the result for attenuated projections 

when both the concentration distribution and attenuation distribution are 

shifted relative to a fixed coordinate system. The proof follows 

immediately using (2.2) and is proven in detail in [28]. 
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THEOREM 5, The attenuated Radon transform of p(x+a,y+b) with 

respect to the attenuation coefficient distribution u(x+a,y+b) is 

(4.1) A{p(x+a,y+b), u(x+a,y+b);~,e} = A{p(x,y), u(x,y);~'.e} , 

where ~· = ~ - a sine + b cose. 

This result will become useful in section 5 when we digitize the 

reconstruction domain and consider transforms of characteristic functions 

over square pixels. If we know the transform at the origin we can 

invoke the shift property given in Theorem 5 and evaluate the attenuated 

Radon transform of characteristic functions over any region in ~2 • 

The result in Theorem 5 requires that the distribution of attenu-

ation coefficients u translate in the same manner as the emitter 

concentration p. If we compare this with the situation where u is held 

fixed, then we get a different result: 

THEOREM 6, The attenuated Radon transform Au of p(x+a,y+b) is 

given by 

(4.2) A{p(x+a,y+b), w(x,y);t;,e} = A{p(x,y), u(x-a,y-bJ;t:' ,e}, 

where ~· = ~ - a sine + b case. 

This shows how the projection data will change when the concentration 

is shifted within a fixed attenuator. This has practical application 

for in vivo dynamic studies. 



The results given in Theorems 1, 2, 3 and 4 used the attenuation 

function a(x,y,-x sine+ y cose,e) as a weight function for the L1 and 

L2 spaces. Since a(x,y,-x sine+ y cose,e) is a function of e, we 

define a new weight function a(x,y), which is independent of e, in 

order to generalize the results for a single projection angle to continuous 

angle: 

(4.3) a(x,y) "' sup {a(x,y,-x sine+ y cose,e)} 
e 

The function a(x,y) represents the minimum attenuation that photons 

emitted at (x,y) can possibly experience. Using a as a weight function, 

one can show that AJJmaps L1(1R 2.a) into L1(a:). The adjoint operator for 

this mapping is given in (2.6), where W=a and w:::::l: 
21T 

( 4.4) (A~ g) (x,y) a (x ,y) 
g(-x sine + y cose,e) = ---

0 

x a(x,y,-xsine + ycose,e) de 

In the following discussion we vvill investigate mappings on L2(!R2,aw), 

where W is an arbitrary nonzero positive weight function. This d-Jffers 

from section 3 where we restricted the concentration functions to be 

defined on a bounded open set~ c !R2. This approach is very much akin 

to applying the Radon transform A
0 

to the function space L2 (~2 .ex
2

+y
2

), 

* Later we will see that for this case the operator A
0
A

0 
is Hermitian 

and has eigenfunctions which involve the Legendre polynomials, 
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DEFINITION. For a positive weight function W defined on ~2 • 

the operators RY and R~ are defined as follows: 

(4.5) i) 

(4.6) ii) 

where A~ is given in (4.4). The notation w- 1 does not mean the inverse 

mapping but the reciprocal function 1/W. 

THEOREM 7. For a positive nonzero weight function W defined on ffi2 

and 1/W E L2(!R2L the follovling are true: 

i) 

i i ) R* y maps 

L 2 ( lR 2, a W) i n to L 2 ( «:, Ay ( W r 1
) 

L 2 («:,AvO~r 1 ) ·into L2(!R2,aw) 

PROOF. (i) Using Schwartz's inequality and the definition of Av 

in (2.2), we see that 
00 

I ( Av p ) ( t: • 8 ) I = I J p ( ~;; • t: , 8 ) a ( ~;; , t: • 8 ) d z;; / 

-oo 

00 

x (j a(c;,t;,8)/W(t;;.t;.e) dt;;) ~ 
-oo 

~ 

where a is given in (4.3), 
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j(A~ol(<,e)j ~ ( 
-co 

The condition that W be a nonzero weight function insures that 

[AJl(wr 1 J{~,8) is nonzero. If p E L2( R2, a W) then by Fabini 's theorem, 

( (AJl p) ( c e) 

[ AJl ( ~J ) - 1 J ( r;, , e ) 

) ~ a(x,y) W(x,y)dxdy < co 

(ii) Using Schwartz's inequality and the definition of R~ in (4.6). 

we have the following sequence of inequalities: 
21T 

(R*Jl h) (x,y) = h(-xsine + ycose,e) a(x,y,-xsine + ycose,e)de 
a(x,y)W(x,y) 

0 
21T 

< ~ ( h2 (-xsin8+ycos8,8) 
a (X ,y) W (X ,y) )~ a(x,y,-xsine + ycose,e)de 

0 
21T 

a(x,y,··xsine + ycos6,6)d6) ~ 

I ( R *]J h) (X ,y) j 2 i:l( X .y) w (X ,y) < 1 
~J(x ,y) 

0 

x a(x,y,-xsine + ycose,e)de 

21T 

h2(-xsin8+ ycose,e) 

21T 

0 

~i~y.-xsin8 + ycose,e) dG 

a(x,y) 
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Since a(x,y,-xsin8 + ycose,e) ~ a(x,y), we know that the second integral 

is less than or equal to 2n. Integrating over ~2 and using Fubini•s 

theorem, we have for hE L 2 ([,A~(W)- 1 ), 

f I (R~ h) (x,y) 1
2 a (x ,y )W(x,y )dxdy 

!R2 

2TI 

I 2n 
~ W(x,y) 

!R 0 

h2 (-xsine + ycose,e) 

x a(x,y,-xsine + ycose,e)de dx dy 

X o(t;+XSin8- YCOS8)dt;d8 dxdy 

< 2n h2 (t;,e) [A~(W)- 1 ](t;,e)dt;de < oo • 

a; 
* 2 2 ~ Therefore. R~ h E L (!R ,aW). Q.E.D. 

An approach to solving the reconstruction problem in single-photon 

ECT involves evaluating the generalized inverse of the attenuated Radon 

transform. We will first define the generalized inverse in the context 

of emission tomography. Then we will show that if the composition of R~ 

and R~ has an L2 kernel [20] then the attenuated Radon transform and its 

generalized inverse can be decomposed and represented as a sum of eigen­

functions. The kernel for the composite operators R~R~ and R~R~ will 

be evaluated; however, we cannot give an explicit expression for their 

eigenfunctions. 
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4. 1. T~eralized inverse. The generalized inverse is an 

operator which is applicable to both finite and infinite dimensional 

Hilbert spaces. Before the widespread use of the generalized inverse 

in matrix theory [5],[6]. it was developed to determine the solution to 

integral and differential equations [60]. We will develop the concepts 

of generalized inverse in a manner similar to that given by Kammerer 

and Nashed [42]. 

Reconstructing attenuated data for a known attenuation distribution 

requires solving the linear operator equation 

( 4. 7) Rf.!(p) ·• 

where Rf.!:X + Y is the operator given by (4.5), p is the distribution 

of isotope concentration, and p
0 

is the projection. The concen­

tration p EX is called the best approximate solution of (4.7) 

if inf {II Rf.!(p) - p
0

11/ p E X}= II R]J(i:)) - p
0

11. This is equivalent to 

minimizing II p- p
0

11 over all p E <R(Ru). The minimum p, characterized 

by the condition p
0

- p, is orthogonal to the space <R(R]J) (i.e., 

p
0

- p E <R(R]J)1
), which is equivalent to p

0
- p E ;V(R~). 

This implies that R~RJJ(p) = R~(p0 ). Therefore, p EX is a best 

approximate solution of (4.7) if and only if it is a solution of the 

equation 

(4,8) 
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The linear manifold ~(R~) may not be closed in Y. Therefore, 

the orthogonal projection of p
0 

onto IR(R~) may not be in IR(R~) and 

(4.7) and (4.8) do not have a solution. However~ if we only consider 

those projection functions which are in IR(R~) + 1R(R~) 1 (if 

M(RJJ) is closed then <\1{RJJ) + 61(RJJ/ = Y). the solution to (4.7) is 

determined by evaluating the generalized inverse R~ of the 

operator R~. R~ is the mapping whose domain is given by 

P(R~) = 61(RJJ) + &?(RJJ)1 , such that for pEh(R~), 

and llp
0

11 < llpll for all pES, p *p
0

• Therefore for each 

p E di(R ) + IR(R )1 = b(RG). RG(p) is a unique solution. The set S 
~ ~ ~ ]J 

of all best approximate solutions of (4.7) for a fixed p E Lr(RG) is 
0 ~ 

given by 

(4. 10) 

It can be seen from (4.10) that the null space of the operator RJJ is a 

measure of non-uniqueness. 

Next we will derive a formula for the generalized inverse when the 

operator R~ is compact. If R~ is compact, then IR(RJJ) is closed and 

1R ( RlJ ) + <\1 ( R~ l ~ Y . 
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4.2. The singular value decomposition. From (4.8) we see that the 

generalized inverse of R~ is closely related to the generalized inverse 

of the self-adjoint operator R~R~. In fact, 

(4.11) 

In the discussion to follow we will show that the knowledge of the 

eigenfunctions of R~Rll and RllR~ lead to a singular value decomposition 
G of RlJ and Rll. 

If ~(R ) is closed,then by the closed-range theorem [74]. R(R*) 
jl ]J 

is also closed and IR(R~) =ft(R )1 
= ~(R*R ). In this case the 

1-' jl jl]J 

operator R~Rll restricted to the space ~(R~) =fVlRlJ)1 is a one-to-one 

and onto mapping of ;V(Rll)1 onto itself. The operator R~RlJ:p + S is 

given by a Fredholm integral equation of the first kind: 

(4.12) S(x' ,y') " Jfp(x,y) K(x' ,y' I x,y) dxdy 

where K is the kernal of the transformation. For the Radon transform 

A
0

:L2(JR2) + L2(t) this kernel is the well-known function 
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(4.13) K(x',y'lx,y) "' 2 

II r- r' II 

where r = (x,y) and r' = (x' ,y') and for which the result in (4.12) 

is a convolution. 

The following theorem gives the kernel K for the operator R~R~. 

The space of projection functions L2 ([,w) has the weight function 

where W is a nonzero positive function on ~2 and 1/W E L2(R2). 

THEOREM 8. The composition of the adjoint operator R~ defined by 

(4.6) and R~ defined by (4.5) maps p E L2(!R2 , aW) into 6 E L 2 (R2 ,at~) 

(R~R~:p + S). where S is given by (4. 12) with the kernel K given by 

(4.14) K (X'. y' I X .y) = -~---· -~--

ltJ (X' • y I ) a (X'. y' ) ll r - r' II 

x [exp {- oo (b + c' e,c + c'f)dr,' - oo (b + c'e, c +~;'f)dc'}w(r;:e-,T-
d d' 

co 

+ exp{- ~(b-r,'e,c-r;'f)dr;'-
00

~(b-~;'e,c-i;'f)dc'}w(-~,8,)J 
-d -d I 

where 

(4.15) 
y -y' 

II r- r' II 
cose 

1 
= 

X -X' 

I! r- r' II 



(4. 16) 

(4. 17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 
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= ::JL::n_ 
II r- r'll 

~ = -x(y-y')_ + y(x- x') 

II r- r' II II r- r' II 

= -(x-u 
II r- r' II 

d = x(x-x') + y(y-y') = < ~,(~-~')> 
II r- r' II 

d' = x'(x-x')+y'Cz:L'l = 

II r- r' II 

b = (y-y') (yx'~l 

II r- r 1 11 2 

c = 

e = 

lx -X I )( X,Y I - ,YX I ) 

II r- r 1 11 2 

(X -X 1 
J 

II r- r'll 

f =: - (y - y I ) 

II r- r'll 

< r' • ( r- r' ) > 

II r - r'll 

PROOF. See the proof of Theorem 3.3 in [28]. 
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The angles 8
1 

and 82 in Fig. 3 are the two projection angles at 

which the points ~ and ~· will project a·long the same line. The 

arguments for the exponentials in (4.14) represent the integrals of the 

attenuation coefficient between the point r and the detector and the 

point ~· and the detector for the projection angles 8 1 and 8
2

, respec­

tively. Therefore, the function K is proportional to the inverse of 

the distance between the two points r and r' times the weighted sum 

of attenuation factors which represent the attenuation between the 

respective points r and r' and the detectors as viewed from angles 

180° apart. 

It follows from the next theorem that the kernel function for the 

composite of the attenuated Radon transform and the back-projection 

operator given in (2.8) allows us to write (4. 12) as a convolution only 

if the attenuation distribution is constant. 

THEOREt~ 9. For the back-projection operator B11 defined by (2.8), 

the operator B11A11
:p + S maps pintoS where Sis given by (4.12) with 

the kernel given by 

(4.24) K (X I , y I I X ,y) 
il r - r'll 

d' 

cosh {j 11(b + c;;'e, c + c;;'f)dc;;'} 

d 

where d, d', b, c, e, and fare given by (4.18)-(4.23). 

For the Radon transform A, it has been shown by [2 ],[12],[29] that 
0 

representing (4.11) as a convolution leads to an efficient Fourier filter 

algorithm which is able to deconvolve the back-projected image S to 

obtain the reconstructed image p. However, for the attenuated Radon 
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Detector 
at el 

-Domain of fL 

XBL7912-3941, 

Fig. 3. The integrals in the first exponential of (4.14) are the line 
integrals of the attenuation distribution~ along the line from the points 
Land ~~, respectively, in the direction of the detector at e , The inte­
grals in the second exponential of (4.14) are the line integrlls of~ 
along the line from the points Land L', respectively, in the direction 
of the detector at e2. 
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transform, (4.12) is a convolution only if p is constant. Even then ·if 

~ >0~ an algorithm cannot be devised since the back-projected image 8 

does not have a finite Fourier transform. 

In the previous discussion we evaluated in Theorem 8 the kernel 

for the operator R~RP. Next we want to do likewise for RPR~. 

If R(RP) is closed, we know by the closed-range theorem that 

R(R ) = jV'(R*)1 
= R(R R*). Since the solution to (4.7) is equivalent p p p p 

to minimizing llp-p
0

11 over all p E R(RP), then when R(RP) is closed 

the solution to (4.7) is equivalent to minimizing IIRPR~ p -p
0

11 over all 

p E R(RPR~). This gives a different formulation of the reconstruction 

problem, namely,the solution to the linear operator equation 

(4.25) 

A 

where the reconstructed isotope concentration function p is given by 

p = R~ p, such that p is the best approximate solution to (4.25). 

The operator RPR~ restricted to the space R(RP) is a one~to-one and 

onto mapping of_;i(R~)J onto itself. The mapping RPR~:p-+ g is given by 

(4.26) g(t:;,e) = p((,e') I(~,el(.e') d(de' 

where I is the kernel of the transformation" For the Radon transform 

A0 :L2 (~2 )-+ L2([), this kernel is 

(4.27) I(~.el~',e') 
/sin(e e')/ 
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THEOREM 10. The composHion of the operator RP defined by (4.5) 

and R~ defined by (4.6) maps p E L2([,w) into g E L 2 ([,w)(RPR~:p ~g) 

where g is given by ( 4.26) with the kernel I given by 

( 4. 28) 

where. 

( 4. 29) iu:.e/(.e') l = ~---~"--~-
/sin(e-e')/ 

exp [ ~ 11(<<~ sine + s case, C case 

00 

+ s sine)d<; ~ l!(-t;' sine' + s' case', t;' cose' + 1;' sine' )ds'] 

so 
and 

(4.30) z;;o = t; cot(e' - e) - t;' cs c ( e I - e) 

I 

z;; = 
0 

(4.31) t; esc ( e' - e ) - t;' cot(e' -e) 

x* case - e' 
= 

sin(e-e') 
(4.32) 

(4.33) * = y 
sin(e- e') 

PROOF. See the proof of Theorem 3.5 in [28] . 

The coordinates • E;) and (z;;',t;') are the intersection shown 
0 

in Fig. 4 of the lines E; + xsino - ycose = 0 and t;' + xsino' - ycoso' - 0 

in the and z;;'t;'-coordinate system, respectively. The line integrals 

in (4.29) represent integrals of the attenuation distribution p along 

the two lines from the point of intersection. 
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etector at 8 

Fig. 4. The first integral in the exponential argument of (4.29) is the 
line integral of the attenuation distribution~ along the line 
E,+xsinO-ycosG=O from the point of intersection with the line 
E,' +xsine' -ycose' = 0. The second integral is the integral of~ along 
the line[,' +xsinO' -ycose' = 0 from the same point of intersection. 
The distances d and d' satisfy d = t;,cot(e-e')- t;,'csc(e-e') and 
d' = t;,csc(e-e•)- t;,'cot(e-e' ), and the coordinates c;;

0 
and c;;' satisfy 

s
0 

= - d and c;;~ = - d', respectively. 0 



-3 

If we examine the kernel given for the Radon transform 

A
0

:L2(1R2)-+ L2( tO in (4. 13), vJe see that it is not square 

integrable (i.e., j/ 2/llr-r' 11 2 drdr' <t: oo ) • However, if we restrict 
[R2 

the space of functions which we vJi ll consider by using weight functions 

W(x,y) and w(x,y) t 1 for the Hilbert spaces L2(1R2,w) and L2(1C,w), 

we can apply Hilbert-Schmidt theory [55],[65],[73] to determine 

a singular value decomposition of R*R and R R*. We consider 
~ ~ )J )J 

only those kernels for these Hermitian operators which are L2 in the 

sense that 

II I K ( ~ I ~ I ) 12 w ( ~ ) w ( ~ I ) dr dr' < 00 

and !R21R2 

JJ ~I(~/~' )12 w(~)w(~') dw dw < 00 

(; a; 

The kernel K is Hermitian if K*(~/~') = K(~'/~) where the adjoint 

kernel is defined such that < Kp,p'>IR2,w = < p,K*p'>[Rz,W' (Here the 

notation of Kp means the same as R~RJl operating on p.) For the Radon 
2 2 2 x2+y 2 

transform A :L (IR ,W) -+ L (C,w) with the weight functions W(x,y) = e 
0 

and w(~.e) = e~
2 

[21],[49],[52], the Hermitian L2 kernel for A~A0 is 

exp I ( I I >2 

! (4.34) K(x' ,y'Jx,y) 2 -r,r-r 
~ ~ ~ 

:::: 

II r- r 1
11 II r'- r 

~ ~ 

and * for A
0
A

0 
is 

(4.35) I(~.e/(.e') l 
:::: ~~-~-~--

/sin(e-e')/ 

Other weight functions for the Radon transform have been investigated 

by Marr [51] and Davison and Grunbaum [17]. 
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If the kernels given by Theorems 8 and 10 for the Hermitian operators 

R~R~ and R~R~ are L2 kernels. then both have the same set of eigenvalues 

A;· We will denote ~;lx.y) to be the eigenfunctions of the operator 

R~R~ corresponding to the eigenvalue A; and denote ~i(~,e) to be the 

eigenfunction of the operator R~R~ corresponding to the same eigenvalue A;· 

The system (~ .• ~.;A.) is called a singular system for the kernel K 
1 1 l 

corresponding to R~R~~and (~i.~i;A;) is a singular system for the kernel 

I corresponding to R~R~ [65]. The eigenfunctions ~i are orthogonal 

relative to the weight function W(x,y) (i.e., ~~~;(x,y)~j(x,y) W(x,y)dxdy 

= 8ij) and the eigenfunctions ~i are orthogonal relative to the weight 

function w(~.e). The kernel K corresponding to the operator R~R~ is a 

linear combination of ~ 1 (x',y')~ 1 (x,y). 

(4.36) 

[65], and the operator R~R~ operating on the function p(x,y) is 

(4.37) 

fR2 

Likewise the kernel I corresponding to the operator R~R~ is 

( 4. 38) 
i 

and the operator R~R~ operating on the function p(~.e) is given by 

00 

( 4. 39) 
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(4.40) cpnk(x,y) k [ kl ]1:2 ( )In/ Jnj 2 2 -x 2 -y 2 

(-l) -~--·--- x+sgn(n)iy Lk (x +y )e , 
7r(Jnl + k)! 

In I 
where Lk are the Laguerre polynomials. The eigenfunctions ~nk 

for the operator A0A~ are 

( 4. 41) lF 2/n/+4k J-1:2 ine -1;
2 

"' 2 k!(JnJ +k)! e H (/;) e 
Jnj+2k 

where H (1;) is the Hermite polynomial of degree m. m 

If the eigenvalues Ai and eigenfunctions c/J; and ~i are known, 

then R~ can be writter as 

(4.42) 

where (cp.,~.;A. ~) 
l 1 1 

is a singular system for R~ [65]. From this 

singular value decomposition of R~, we can write the generalized inverse as 

(4.43) 

Explicit expressions for the eigenfunctions cp. and ~· have not been 
1 1 

expressed for R~ if ~ > 0. However, the structure developed in 

Theorems 8 and 10 guarantee the existence of eigenfunctions if the 

weight function W is chosen so that the kernels K in (4. 14) and I 

in (4.28) are L2. 
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5. A numerical method for r~constructinJL_attenuated_Ql:'Ojection data. 

The practical implementation of inverting the attenuated Radon transform 

given in (1 .2) requires that the relationship between the unknowns 

representing the distribution of the concentration of radionuc1ide 

and the observed projection values be put in a form tractable for 

digital processing. In this section we will show how the continuous 

transform reduces to a discrete linear transform that uses a matrix 

equation to represent data measured at discrete angular and lateral 

sampling. A complete description of the discrete transform involves 

obtaining projection data from a transmission experiment and reconstructing 

these transmission data. Then the reconstruction of the emission data is 

determined with iterative algorithms that are capable of solving large 

systems of linear equations [38]. 

To represent the concentration function p and the attenuation 

function w digitally, one must parametrize these continuous distributions 

by a finite array of numbers. The parameters are coefficients of an 

expansion of basis functions for the continuous distribution. There 

are many collections of basis functions that can be used; however, 

the choice depends not only on the errors incurred by the numerical 

approximation of taking only a finite number of terms in the series 

expansion, but also on the amplification of statistical noise and the 

efficiency of calculating the continuous distribution. 

We will consider an orthonormal basis which is a set of characteristic 

functions defined over rectangular pixels. Suppose that the region ~ as 

shown in Fig. 5 is divided into disjoint rectangular regions called 
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pixels for = 1, ... ,M and j -- l , ... , N: 

where a is the width and b 

b 

is the height of the rectangular pixel n ... 
lJ 

Later we will show reconstruction results for square pixels (a=b) but 

for the present we will keep the discussion more general. Over these 

rectangular regions we define the orthonormal basis as 

~ 
I 1 ) if (x ,y) En .. \--ab lJ 

( 5. l) x .. (x,y) :;;; 

lJ 

0 otherwise 

Using these basis functions, we can expand the function p as 

( 5. 2) p(x,y) 

where 

( 5. 3) 

M N 
= L L P· · X· .(x,y) , 

i=l j=l lJ "IJ 

!21Si:lil 
2 

J 
b(2j-N-2) --2--

p(x,y)dxdy . 

The coefficients p .. are tne average value of the concentration over the 
lJ 

rectangular region st ... 
lJ 

The basis {X .. } given by (5.1) is referred to by Rosenfeld and Kak 
lJ 

[61] as standard sampling and is chosen primarily for its computational 
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efficiency. The disadvantage of choosing these basis functions is that 

the approximate function p can have sharp boundaries [33]. Thus the number 

of pixels chosen must be large enough to be a good approximation for 

even a smoothly varying function. A generalization of standard sampling 

is the finite element approach [67], which uses basis functions that are 

piecewise linear polynomials in two variables whose supports are 

polygons that possibly overlap. Other possible basis functions include 

Fourier and Bessel functions. 

The evaluation of the attenuated Radon transform of the basis 

functions x .. is simplified if we consider the attenuated Radon transform 
lJ 

of the characteristic function of a rectangle with sides a and 

b positioned at the center of rotation. Then the corresponding 

transforms of x .. are obtained using the shift property given in 
1J 

Theorem 5. This gives 

Mx
1
.J.(x,y), Jl·. X· .(x,y); 8} = 

1J 1J 

If 7lsin al • ~ico; oi < (' [•(2i-M··I)/2]sin a- [b(2j-N-l)/2]co; o 

I f [ (•/1 Jsln aj + bj_1 [cos oL-__,;)]} 1• . b I . . a b ;;-
1
-; - exp -v 1j- ·-- icos-OT 

1
,.,-n-er-- - If l'l"n el- 21cos el: l + [a(21-M-I)/?]sln o- [b(2J-N-I)/1]cos o < • zlsln •I + ,-Ieos •I 

J.JJ - exp[-v -,--~]} 
>Jij r 1j jCOS tl1 

if ~lsln •I- ~-leo; al ~ ( + [a(2i-M-I)/2]sin a- [b(2j-N-I)/2]cos o <- 7Jsin •I + ~Ieos •I 

1f -~lsin •I + ~Ieos •I: ( + [a(2i-M-I)/2]sin e- [b(2j-N-1)/2]eo; o < 71sln ol - ~-Ieos oi 

I {I [ (•/1 ]sin ol + b/Ucos ol '--')]} • b . · · j• b. I '~j - e<p -vij -·--- Tc"os elrsin ·er---- if ·zlsln •I- l'lcos •I: ( + [a(11-M-I)/1]Sln a- [b(2J-N-I)/1]cos 0 < l'isln •I- l'iCOS ,, 

If { + [a(2i-M-I)/1]sln o- [b(lj-N-1)/?]cos e <-;!sin el . ~Jco; al 

The attenuated Radon transform of the radionuclide distribution 

given by (5.2) with an attenuation distribution 

M N 

( 5. 5) JJ(x,y) "' 2 L JJmn Xmn(x,y) 
m=l n=l 



is 

(5. 6) 

where 

( 5. 7) 

p(~.e) 

M N 

P;j Sij(~,8) 
i=l j=l 

sij(t;,e) = A{X;j(x,y), fl;jXij(x,y);~.e} exp I I flmnA0{Xmn(x,y);~.e}J 
m n 

(m,n) E E .. 
lJ 

and 

(5.8) 

E .. = {(m,n)lma cos8 + nb sin8 > ·ia cos8 + jb sin8, l<m<M, l<n<N}. 
lJ 

The attenuated Radon transform A{Xij(x,y), fl;jXij(x,y);~.e} of the 

characteristic function X;j is given in (5.4). (This characteristic 

function has, over its support ~ij' a constant attenuation coefficient 

fl;j·) The function A0{Xmn(x,y);~.e} is the Radon transform of the 

characteristic function Xmn· 

If the projections given by (5.6) are sampled for a finite number 

of angles eQ,' r;, "'l, ... ,L and a finite number of points t:k. k =l, ... ,K 

for each angle. then the reconstruction of the radionuclide distribution 

is the solution to the following system of equations 

M N 

( 5. 9 ) Pi j s i j ( ~ k , e R-) = p ( ~ k • e Q, ) • k = 1, .... K 

i = 1 j"' l Q,= 1 , ..•• L 

To simplify notation, (5.9) can be rewritten in matrix form 

by resorting to a lexicographic or stacked notation which 
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contracts the double indices (i~j) and (k.~) to single indices i' and k' 

respectively. Thus. 

( 5. 10) Ap = P 

where A is a KLxMN matrix with elements ai'ki = s 1 j(l;k~e.Q,) such that 

i' = (j-l)xM+i and k' "'(!1,-l)xK+k. The vector p has elements 

P;• = pij' and P is a vector with elements pk' = Pkm· 

The estimate p for the radionuclide distribution minimizes the 

least-squares function 

{5.11) 

where ¢ is a covariance matrix for the data and is a symmetric positive 

semidefinite matrix. The estimate is given by the following two 

equivalent forms 

(5.12) p = 

(5.13) p = 

where G denotes the Moore-Penrose generalized inverse [ 5]. [ 6]. 

The least squares solution p is the best approximate solution to 

the system of equations 

(5. 14) 

and pis the best approximate solution of (5.14) if and only if pis 

a best approximate solution of 

(5.15) 
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In most cases the data collected from any patient study requires 

the determination of a best solution to an inconsistent system of 

linear equations. The inconsistency in the data comes from such physical 

factors as statistical noise in the data, inadequacy of the model, and 

patient movement. 

The dimensions of the matrix A are too large in all practical 

applications so that at present the solution to the best estimate p 

cannot be found by matrix inversion using (5.12) or (5.13). 

Therefore. we must resort to iterative methods· to minimize 

the X
2 

function in (5.11). There are two principal types of 

iterative reconstruction procedures: (l) those which adjust the 

parameters involved in one or a small number of projection constraints 

at each iterative step- the ART-type methods; and (2) those which 

adjust all the parameters based on information from all the projection 

samples at each iteration- the SIRT-type methods. 

An ART (for Algebraic Reconstruction Techniques) method was first 

proposed by Gordon, Bender and Herman [27] and is based on a theorem proven 

by Kaczmarz [41]. A tutorial on ART was later published by Gordon [26] 

and a description of other ART methods along with optimization criteria 

and theorems on the convergence of the algorithms to optimum images was 

given by Herman and Lent [32]. A method for incorporating errors with 

the ART-type algorithms was described by Huebel and Lantz [37]. For 

the finite-dimensional case, the proof of convergence for consistent 

systems is given in [33],[68]. Convergence rates for this iterative 

procedure are analyzed by Hamaker and Salmon [31]. In ART, a new solution 

is given by 

(5. 16) n+l n n p = p + q 
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where 

( 5. 17) qn = a .G { p. _ < a . , Pn > } = 
J J J 

1 T n -----::::-
2 

a. { p.-<a.,p >} 
lla} J J J 

( 5. 18) j = n mod KL + 1 n=O,l,2,. .. 

K is the number of projection bins, L is the number of projection 

angles, aj is the j-th column of A, and Pj is the j-th projection sample. 

The operation in (5. 16) is equivalent to operating on pn with the 

discrete analogue of the operator P 8 in Corollary 4.1, namely, the 1J, 

opera tor P . : 
1J,J 

(5.19) n p . p 
fJ,J 

= P n + a .G { p . _ < a . , P n > } • 
J J J 

Note that the operator P 8 represents a continuum of samples at the 
11• 

projection angle e, whereas P . corresponds to one projection bin at 
1J,J 

the angle e. 

SIRT (for Simultaneous Iterative Reconstruction Techniques) methods 

were first applied to reconstruction tomography by Goitein [25] and 

Gilbert [24]. Later, steepest descent methods and conjugate gradient 

methods originally developed by Hestenes and Stiefel [34] were 

implemented by Huesman and co-workers [38]. A more recent paper about 

SIRT-type algorithms is by Lakashminarayanan and Lent [46]. These 

iterative schemes basically determine a direction qn and a step length 

an for each iteration such that the new solution is given by 

( 5. 20) 
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n . z n+l The step length calculation a is determ1ned so that X (p ) = 

x2 (pn +an qn) is a minimum. It was shown in [38] that Goitein's 

method is the same as a steepest descent method in a transformed space. 

In most cases, convergence of the iterative process is accelerated by 

performing such a scale change on the parameters. The scale chanqe is 

given by 

( 5. 21) 
I 

P "' Dp 

where D is a diagonal matrix with diagonal elements equal to 

(5.22) D .. , [ 
T -1 ]. ~ 

(A <P A)ii 

The iterative stepping is performed on the transformed variables p' 

and the final reconstruction is obtained by the operation 

(5,23) 
-1 I 

P = D P 

A mathematical approach to analyzing the rates of convergence for 

steepest descent and conjugate gradient methods is presented in [42] 

and [54]. Simulations in [28] show that the rate of convergence is a 

function of the attenuating medium. 

6. ~JGJ~ations. The algorithm illustrated in Fig. 6 can be used 

in single-photon ECT to reconstruct radionuclide distributions from 

projection data which have been attenuated by a variable attenuation 

coefficient. This algorithm uses subroutines from the RECLBL Library 

[38], a package of computational subroutines that apply to the 
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ALGORITHM FOR VARIABLE ATTENUATION CORRECTION 

1.7 em 

TRUE IMAGE 

fL"' .0958 cm-1 

-1 
fl-=.05 em 

RESULT 

RESULT 

5em 

INPUT THE PROJECTION 

DATA FROM THE 

TRANSMISSION SCAN 

RECONSTRUCT THE 

TRANSMISSION DATA 

EVALUATE FOR EACH 

ANGLE 8 THE 

ATTENUATION FACTORS 

s ij (.; k , e k l 

INPUT THE PROJECTION 

DATA FROM THE 

EMISSION SCAN 

RECONSTRUCT THE 

EMISSION DATA 

XBB 793-3411 

Fig. 6. Algorithm for reconstructing emission data attenuated by a 
variable attenuation coefficient. Transmission data is reconstructed in 
order to determine the actual attenuation factors s .. (r;k' e,Q,) in (5.7). 
The emission reconstruction uses these factors to c~~pensate for attenu­
ation. 
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reconstruction of transverse sections from projection data. A transmis­

sion reconstruction is first done to accurately determine the attenuation 

coefficients. Then the factors s 1 j(~k.e~) are evaluated using (5.7). 

The radionuclide distribution is then reconstructed using an iterative 

algorithm to fit the emission projection data. 

This algorithm requires two reconstructions: one for the 

transmission data to obtain the attenuation coefficients and one for 

the emission data to obtain the final reconstruction. Errors in 

the reconstruction of the attenuation coefficients will increase the 

errors in the emission reconstruction. These errors in the emission 

reconstruction are the result of noise propagated from three sources: 

(1) statistical fluctuations in emission data, (2) statistical fluctua­

tions in the incident transmission beam, and (3) statistical fluctuations 

in the emerging transmission beam. These sources of errors can be 

evaluated based on the percent root mean squared (%RMS) uncertainty 

of the target area of interest. The %RMS uncertainty = 100 a(p)/p, 

where a(p) and p are the sample error and the sample mean, respectively, 

over a region of a finite number of pixels. Simulations in [28] indicate 

that the %RMS uncertainty of a distributed source in a 20-cm diameter 

region with w = 0.15 cm- 1 cannot be better than 9.8% even with infinite 

statistics if the attenuation coefficients are determined using an 

incident transmission beam of 1000 photons per projection ray 

(4.2 x 10 5 total photons). 

Single-photon ECT with attenuation compensation has been applied 

to both human and canine studies using various radionuclides [10]. 

The ability to image a particular organ depends on the ability of the 
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organ to take up the radionuclide compared to the surrounding tissue, 

the energy of the emitted photon, and the measured statistics for both 

emission and transmission. For example, the use of radionuclides for 

myocardial imaging generally gives a low target-to-nontarget contrast 

ratio. For high-energy radionuclides such as potassium-43, rubidium-82, 

rubidium-81 and -82m, and cesium-129, fewer photons are attenuated as 

compared with Tl-201 and Cs-13.1; however, the contribution of activity 

from back muscles and lungs tends to wash out the image on projection [15]. 

The anterior myocardium is well visualized with lower energy radionuclides 

such as cesium-131 and thallium-201; but photons from the posterior 

myocardial wall are greatly attenuated and quantitation of septal and 

posterior wall defects is seriously limited. The fundamental problem 

is not so much the specificity of uptake of radionuclide in the organ vs. 

uptake in the contiguous tissues, but the physical properties of the radio-

nuclide that one can correlate with attenuation coefficients, which in 

turn dictate the required statistics to insure a desired precision. 

Results from a study showing abnormal accumulation of isotope in 

two tumors in a 50-year-old woman are shown in Fig. 7. This study was 

99m done one hour after injection of 15 mCi of Tc-pertechnetate (140 keV). 

Normal brain tissue is either relatively or completely impermeable to 

the passage of most radionuclides from the blood. In contrast, brain 

tumors are much more permeable than normal brain, and this results in 

a significantly higher relative concentration of radioactivity in the 

tumor. For the study shown in Fig. 7, the projection data were 

collected in 10° increments over 360° which gave approximately 240,000 

counts per slice. The attenuation coefficient was assumed to be constant. 
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BRAIN TRAN 

XBB 7711-7514 

Fig. 7. Transverse sections
9
§howing abnormal accumulation in the head of 

a 50-year-old patient using mTc-pertechnetate and 36 views, The mea­
sured number of emission events for each section are (from bottom to top) 
220,582, 251,213, 265,286, and 222,584, respectively. 
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Simulations done in [28j indicate that for perfect transmission statistics 

the %RMS uncertainty is between 91.5% and 41.5% for attenuation 

coefficient y = 0.15 cm- 1 and emission counts of 2.5 x 10 5
• This means 

that tumors with a contrast of 2 to 1 can be seen, but their boundaries 

are hard to delineate. 

Potassium and potassium analogs such as cesium have a high affinity 

to the heart because of the high muscular and nerve activity. Transverse 

section images of 129cs in the human myocardium are shown in Fig. 8 for 

a patient who had had four myocardial infarctions. The study was done 

by taking views at 20° increments. A transverse section reconstruction 

of attenuation coefficients was performed first to correct for attenu­

ation in the emission reconstruction. Section 4 shows a paucity of 

uptake in the posterior wall and septum consistent with electrocardio­

graphic findings. The left myocardial wall, septum, and right ventricular 

myocardium are recognizable. The dome of the liver is seen in sections 

2 and 3, as would be expected, since the liver accumulates cesium and 

potassium analogs with about the same avidity as the heart. In order 

to obtain the correct attenuation coefficients for Cs-129 (375 keV-48%), 

the results of a transmission study using Tc-99m (140 keV) were extrapolated 

using the tables in [40] for attenuation coefficient versus energy for 

tissue, so that the attenuation coefficients corresponded to the 375 keV 

photons emitted from Cs-129. This means that in tissue the attenuation 

coefficient is approximately 0.11 cm- 1
• The transmission study in Fig. 8 

has a %RMS uncertainty of at least 15% for an incident number of photons of 

almost 4000 per projection bin. The %RMS uncertainty in the emission 

images is approximately 50%. 
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When injected intravenously, selenomethionine is rapidly removed 

from the blood and incorporated in protein synthesis. The isotope will 

eventually reappear in plasma proteins. Selenomethionine concentration 

in muscle is much lower than in the thyroid, parathyroid. or blood 

because of the slow turnover rate of muscle protein. A study shown in 

Fig. 9 was done on a dog to see how well 75se-selenomethionine (136 keV-

57%, 265 keV-60%) is taken up in the heart. On the left are two 

transverse sections demonstrating the position of the heart in the 

chest with sufficient resolution to show the esophagus. The accumulation 

of 75se in the myocardium is shown on the right, The %RMS uncertainty 

is at most 90%, 

The accumulation of 99mTc-sulfur colloid in the liver and spleen is 

shown in the transverse sections of Fig. 10. The Kupffer cells of the 

liver remove foreign substances from the blood and hence will accumulate 

the labeled sulfur granules of 1 ~m in diameter (see also Fig, 1 and 

discussion in section 1). The better the liver is functioning, the more 
99mTc attached to sulfur colloid will be available for imaging; that is, 

the functioning liver becomes labeled. The time required to reach a 

steady state accumulation is 3 to 5 minutes, and the time during which 

the distribution of concentration remains constant is 30 minutes or longer, 

The %RMS uncertainty is at most 41% for the images shown in Fig. 10. 
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HUMAN MYOCARDIUM, LIVER, 

SPLEEN TRANSVERSE SECTIONS 

Tc-99m 99 mTc - Sulfur Colloid 

TRANSMISSION EMISSION 

No correction Correction for 
for attenuation attenuation 

XBB 767~5951 

Fig. 10. Accumulation of 99mTc-sulfur colloid in transverse sections of the liver 
and spleen are shown both with and without attenuation correction using the transmis­
sion reconstruction of the attenuation coefficients. In 72 projections over 360° the 
emission gvents in eagh transversg section to~aled, from botton to top: 4.10 x 106, 
4.58 x 10 , 3.56 x 10 , 2.69 x 10 , 1.69 x 10 , and 0.81 x 16b events. The incident 
number of photons per projection bin for the transmission study is, from the bottom 
to top: 1,556, 1,616, 1,611, 1,575, 1,534, 1,492, and 1,396. 
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7. usions. This paper has developed a mathematical theory 

for single-photon emission computed tomography. The practical application 

of reconstructing projections attenuated by a variable attenuation 

coefficient was shown to involve iterative techniques of implementing 

a generalized inverse of the discrete attenuated Radon transform. 

A major concern in the study of the attenuated Radon transform is how the 

magnitudes of the attenuation coefficients affect the rate of convergence 

for the iterative methods and how they amplify the statistical fluctua-

tions of the measured data in the reconstructed image. Presently tracers 

are usually evaluated based on the specificity of the tracer to the target 

organ for the desired pathological study so that there is sufficient 

contrast between the target and surrounding tissue. They are also 

evaluated based on the camera system's ability to sufficiently collimate 

high-energy photons for isotopes such as Cs-129 or eliminate the Compton 

scattered photons by energy selection for a low-energy radionuclide such 

as 99mTc. However, simulations in [28] have shown that the rates of 

convergence for the iterative algorithms and the amplification of 

statistical errors for the iterative methods are a function of the 

magnitude of the attenuation coefficient. Therefore these tracers must 

also be evaluated based on the iterative algorithms' ability to accurately 

reconstruct the true concentration distribution in light of the increased 

statistical uncertainty for large attenuation experienced by low-energy 

radionuclides such as Tl-201. 

The eigenfunctions and the spectrum of the operators RuR~ and R~Ru 

are an important mathematical construct because they give insight into 

how errors in the reconstructed image are propagated due to measurement 
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errors. If weight functions in Theorems 8 and 10 are chosen so that the 

kernels K(4. 14) and 1(4.28) are L2 kernels then there exist eigenfunctions 

for R R* and RJl*RJl. However, explicit expressions for these eigenfunctions 
]J ]J 

have not been developed for even the simplest case of constant attenuation. 

Only for the Radon transform have the eigenfunctions of A~A0 been 

expressed analytically [21],[49],[51],[52],[75]. The eigenfunctions 

of A0A~ have also been developed for various weight functions by 

Davison and Grunbaum [17]. Therefore research has been continuing to 

either analytically or numerically calculate the eigenfunctions and the 

* * spectrum for RJlRJl and RJlRJl. 

Inversion of the discrete attenuated Radon transform requires using 

iterative algorithms to reconstruct projection data attenuated by a 

variable attenuation coefficient. These algorithms converge with 

acceptable errors within 15 iterations for most radionuclides used in 

nuclear medicine. Simulations [28] have shown that the rate of 

convergence decreases as the magnitude of the attenuation coefficient 

-1 increases above 1l = 0.19 em for a 30-cm diameter disk, so that at 

1l = 0.60 cm-l the result does not converge to an acceptable error 

criterion even after 30 iterations. This means that energies of photons 

emitted in tissue of less than 22 keV should not be used in single-photon 

ECT. The isotope of 131 cs has a very low energy photon of 34.5 keV 

(x-rays of xenon) which has an attenuation coefficient of 0.27 cm- 1 in 

tissue. This isotope can be used for reconstructing transverse sections 

of the body in most areas where there is solid tissue; however, the 

presence of bone may yield artifacts due to the photoelectric absorption 

of calcium leading to an attenuation coefficient of 1.3 cm- 1. Isotopes 
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of Tl-201 (73-80 keV, fl = 0.18 cm- 1), Tc-99m (140 keV, fl = 0.15 cm- 1), 

( -1 Se-75 136 keV, fl = 0.15 em , 57%; -1 265 keV, fl = 0.125 em • 60%), and 

( - l Cs-129 375 keV, fl = 0.11 em , 48%) have been used for ECT with good 

contrast and spatial resolution. 

Simulations [28] have also shown that the %RMS uncertainty increases 

with an increase in the attenuation coefficient. With the doses of radio-

pharmaceuticals presently used in nuclear medicine, the %Rt~S uncertainty 

in the reconstructed image ranges between 50% and 20%. Also errors in 

a transmission reconstruction used to determine the attenuation factors 

(5.7) induce additional errors in the emission reconstruction. This 

means that using Tc-99m as a brain scanning agent, the reconstructed 

%RMS uncertainty can be no better than 9.8%, even with infinite statistics, 

if the attenuation coefficients are determined from a transmission 

experiment with 1000 (4.2 x 106 total photons) incident photons per 

projection ray. 

If the attenuation coefficient is constant, explicit inverse 

equations exist for a modified attenuated Radon transform [28] such 

that the back projection of filtered projection algorithm [38] used 

in TCT applications extends nicely to single-photon ECT [28]. An 

important application of this method of attenuation compensation is 

the reconstruction of radionuclide distributions in the brain, 

where we find emission projection data can be reconstructed using an 

attenuation-dependent convolver or filter which reconstructs the 

transverse section reliably and requires little computer memory and 

very little computer time. 
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